DNA POLYMORPHISM – SCIENCE & TECHNOLOGY

NEWS: DNA Fingerprinting is a necessary tool for varied purposes which uses the DNA uniqueness due to **DNA Polymorphism.**

WHAT'S IN THE NEWS?

DNA Fingerprinting

- 1. **Definition**: DNA fingerprinting is a scientific technique used to identify individuals based on their unique genetic profiles.
- 2. **Process**: It involves analyzing specific DNA sequences, primarily short tandem repeats (STRs), which are highly variable among individuals.
- 3. Applications:
 - Establishing genetic relationships (e.g., paternity testing).
 - Solving criminal investigations by matching DNA from crime scenes.
 - Forensic identification of victims and suspects.
- 4. **Biological Samples Used**: DNA fingerprints can be obtained from various biological samples, including:
 - Blood
 - Saliva
 - Sweat
 - Semen
 - Skin cells
 - Bones
 - Teeth
- 5. **Reliability**: DNA fingerprinting is highly reliable since every person (except identical twins) has a unique DNA profile.

About DNA Polymorphism

- 1. **Definition**: DNA polymorphisms are small variations in DNA sequences that differentiate individuals from one another.
- 2. **Inheritance**: These variations arise due to differences in the genetic material inherited from both parents.
- 3. Significance: DNA polymorphisms are crucial for:
 - Tracing ancestry and evolutionary lineage.
 - Identifying individuals in forensic science.
 - Understanding genetic diversity within populations.

Molecular Basis of DNA Polymorphism

- 1. Sources of Polymorphism: DNA polymorphisms arise due to mutations such as:
 - **SNPs (Single Nucleotide Polymorphisms)**: Single base changes in the DNA sequence.
 - VNTRs (Variable Number Tandem Repeats): Repeating DNA sequences that vary in number among individuals.
- 2. Genetic Impact: These variations occur in both:
 - Coding regions (genes) affecting protein function and traits.
 - Non-coding regions influencing gene regulation and expression.
- 3. Causes: DNA polymorphisms can result from:
 - Genetic recombination during meiosis.
 - Errors in DNA replication.
 - Environmental influences such as radiation and chemicals.

Evolutionary Significance of Polymorphic DNA Sequences

- 1. **Genetic Diversity**: Polymorphisms contribute to variations within populations, enabling species to adapt to environmental changes.
- 2. **Natural Selection**: Certain genetic variations may provide survival advantages, influencing evolutionary fitness.

- 3. **Tracing Ancestry**: Polymorphic DNA sequences help in studying evolutionary relationships among different populations and species.
- 4. **Disease Susceptibility**: Some genetic variations increase or decrease the risk of diseases, helping in medical research and drug development.

About Short Tandem Repeats (STRs)

- 1. **Definition**: STRs are repetitive DNA sequences where short nucleotide motifs (2-6 base pairs) are repeated multiple times at specific locations in the genome.
- 2. Variability: The number of repeats varies among individuals, making STRs useful for distinguishing genetic profiles.
- 3. **Role in DNA Fingerprinting**: STR analysis forms the basis of DNA fingerprinting, allowing forensic experts to match DNA samples accurately.
- 4. **Forensic Application**: STR analysis is widely used in criminal investigations and genetic identification.

Comparison: DNA Copying (PCR Process) vs. DNA Fingerprinting

Aspect	DNA Copying (PCR Process)	DNA Fingerprinting
Definition	A technique to amplify (create multiple copies of) a specific DNA sequence.	A technique to identify individuals based on unique DNA patterns.
Purpose	Used for research, disease diagnosis, and forensic analysis.	Used for identity verification, paternity testing, and forensic investigations.
Key Process	Polymerase Chain Reaction (PCR).	STR analysis and Capillary Electrophoresis.
Steps Involved	 Denaturation (95°C): DNA strands separate. Annealing (60°C): Primers bind to target DNA. Extension (72°C): DNA polymerase synthesizes new strands. 	 DNA extraction from biological samples. STR amplification via PCR. DNA fragment separation via Capillary Electrophoresis. Creation of a unique DNA profile.
End	Millions of identical copies of a	A unique DNA pattern (fingerprint) for an

Aspect	DNA Copying (PCR Process)	DNA Fingerprinting
Product	specific DNA segment.	individual.
Use in Forensics	Amplifies DNA from crime scene samples before analysis.	Compares crime scene DNA with suspect DNA.
Use in Medicine	Used in genetic research and disease detection.	Assists in organ transplant compatibility and hereditary disease identification.
Data Output	Large quantities of identical DNA for further studies.	A unique STR profile for distinguishing individuals.

Applications of DNA Fingerprinting

1. Forensic Science:

- Used to identify criminals by matching DNA evidence from crime scenes with suspects.
- Helps solve cold cases and exonerate wrongly accused individuals.

2. Paternity Testing:

• Establishes biological relationships between parents and children.

3. Disaster Victim Identification:

• Helps identify bodies in mass disasters using DNA remains.

4. Medical Applications:

- Used to determine genetic compatibility for organ transplantation.
- Identifies hereditary diseases by analyzing DNA variations.

5. Legal and Ethical Use:

• Used in court cases involving inheritance disputes, immigration, and criminal justice.

Ethical and Legal Issues in DNA Polymorphism Studies

1. Genetic Privacy Concerns:

• DNA data can reveal sensitive personal information, raising concerns about privacy.

2. Risk of Genetic Discrimination:

• Employers and insurance companies may misuse genetic information to deny jobs or coverage.

3. Informed Consent and Data Ownership:

• Questions arise over who owns and controls an individual's genetic information.

4. Legal Challenges in Forensics:

• DNA evidence in criminal cases must be handled carefully to avoid wrongful convictions.

5. Ethical Concerns in Ancestry Testing:

• Ancestry DNA tests may unintentionally reveal sensitive family secrets or mislead individuals about their heritage.

Source: <u>https://www.thehindu.com/sci-tech/science/what-are-dna-polymorphisms-and-how-do-they-differentiate-between-people/article69369159.ece</u>