OPTICAL ATOMIC CLOCK: SCIENCE & TECHNOLOGY

NEWS: Intercontinental optical clock comparison sets stage to redefine the second **WHAT'S IN THE NEWS?**

Optical atomic clocks, which use visible light frequencies for time measurement, are far more precise than caesium-based clocks and are likely to redefine the SI second by 2030. This advancement supports critical fields like satellite navigation, climate monitoring, and quantum technologies.

Context

- Researchers from six countries have conducted the world's most accurate comparison of optical atomic clocks across three continents.
- This is a significant breakthrough that could **redefine the SI unit of time the second**, replacing the existing caesium-based atomic standard.

Current Definition of a Second (since 1967)

- Present Standard:
- Why Caesium?
 - Chosen One second is defined as **9,192,631,770 oscillations (or cycles) of microwave radiation** corresponding to the transition between two hyperfine energy levels of the **caesium-133 atom**.
 - due to its **high stability**, **long-term reliability**, and **global consensus** in the metrology community.
- Timekeeping in India:
 - The National Physical Laboratory (NPL) in Delhi maintains the official Indian time standard using five caesium clocks.
 - These time signals are disseminated nationwide via:
 - INSAT satellite network
 - Telecom and internet systems
 - Optical fibre links

What are Optical Atomic Clocks?

1. Basic Principle

- Like traditional atomic clocks, optical clocks work on the **atomic transition principle** measuring time based on how atoms **switch between two fixed energy levels**.
- But while caesium uses **microwave radiation**, optical clocks use **visible light (optical frequencies)** through **high-precision lasers**.

2. Common Atoms Used

- Strontium-87 (Sr)
- Ytterbium-171 (Yb) and Ytterbium ions (Yb⁺)
- Indium-115 ions (In⁺)
- Strontium-88 ions (Sr⁺)
- These atoms are chosen because of their **extremely narrow linewidth transitions** and **minimal sensitivity to environmental disturbances**.

Why Replace Caesium with Optical Clocks?

1. Higher Frequency, Better Precision

- Optical clocks operate at frequencies thousands of times higher than microwave clocks.
- More oscillations per second \rightarrow better resolution of time intervals.
- Comparison of frequencies:
 - **Caesium**: ~9.19 billion Hz (microwave)
 - **Strontium**: ~429 trillion Hz (optical)
 - **Ytterbium**: ~642 trillion Hz (optical)

2. Extreme Stability and Accuracy

- Some optical clocks have a stability level of one second drift over 15 billion years.
- That's up to **10,000 times more stable** than traditional caesium clocks.
- Enhanced stability enables better synchronization in scientific, navigation, and financial systems.

3. Enhanced Measurement Tools

- Optical clocks enable detection of even **minuscule gravitational changes** due to their extreme sensitivity.
- Useful in **geodesy, climate monitoring**, and **fundamental physics tests** (e.g., Einstein's General Relativity).

How Optical Atomic Clocks Work

- A laser is used to stimulate electrons in atoms (e.g., Sr, Yb) to jump between energy states.
- The frequency of this transition becomes the clock's "tick".
- Since optical frequencies are so high, they allow greater precision and time resolution.

Significance of the Development

1. Redefining the SI Second (Target: ~2030)

- This global optical clock comparison lays the technical foundation to **revise the definition of the second** in the SI system.
- The redefinition will be **based on optical frequencies**, aligning with advances in timekeeping.

2. High-Precision Scientific Applications

- Satellite Navigation:
 - Systems like GPS, NavIC, Galileo will benefit from better time synchronization.

• Radio Astronomy:

- Black hole imaging and deep-space observations require atomic time stability.
- Climate Science & Earth Observation:
 - Optical clocks help track gravity-induced sea level and ice sheet changes.
- Quantum Technologies:
 - Accurate time signals are critical for emerging **quantum communication and computing** systems.

Conclusion

Optical atomic clocks represent a transformative leap in timekeeping science, offering **unparalleled stability and accuracy**. Their global adoption is poised to **redefine the second** and enable breakthroughs in navigation, geophysics, and fundamental science, with India's NPL expected to integrate these standards in the future.

Source: <u>https://www.thehindu.com/sci-tech/science/intercontinental-optical-clock-comparison-sets-stage-to-redefine-the-second/article69787042.ece</u>