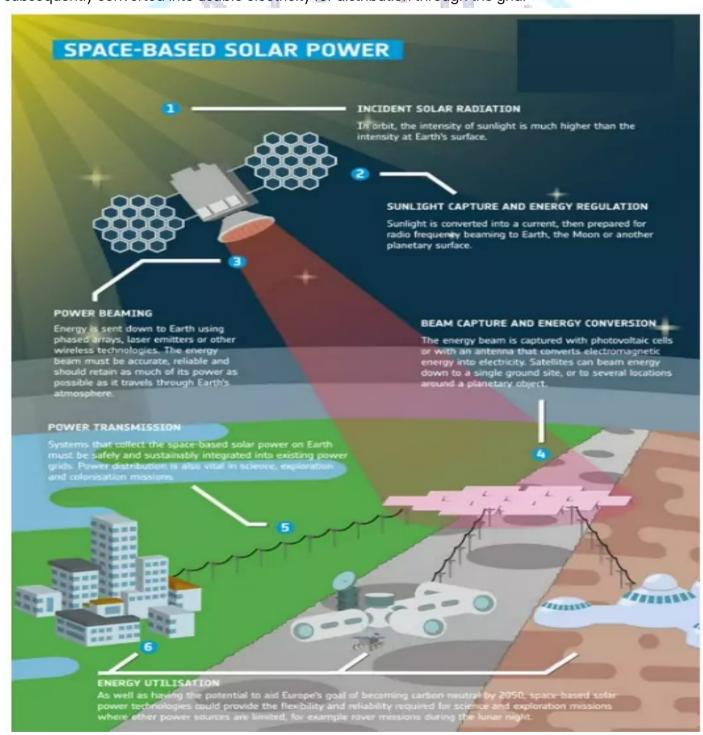
SPACE-BASED SOLAR POWER - SCIENCE & TECHNOLOGY

A recent study estimated that Space-Based Solar Power (SBSP) could meet up to 80% of Europe's renewable energy needs by 2050.


SBSP

Concept of SBSP

Fundamental Idea - SBSP proposes the launch of large satellites equipped with massive solar panels into geostationary orbit, where sunlight can be harvested without interruption.

Energy Transmission - The collected solar energy is converted into microwave beams (or in some models, laser beams), which are then transmitted to large receiving stations on Earth.

Conversion for Use - On Earth, these beams are captured by rectennas (rectifying antennas) and subsequently converted into usable electricity for distribution through the grid.

Feasibility and Supporting Studies

NASA's Models Studied - King's College London conducted simulations on two NASA-proposed SBSP designs:

- Heliostat Swarm Design Uses a network of reflectors that continuously redirect sunlight to a central satellite for collection, ensuring round-the-clock solar harvesting.
- 2. **Planar Array Design -** Relies on very large, flat solar panel arrays that are intermittently oriented but allow scalability for larger power collection systems.

Key Findings - The simulations revealed that both designs can deliver near-continuous power to Earth, thereby overcoming the intermittency challenges faced by terrestrial solar power plants.

Potential Advantages of SBSP

Continuous Power Supply - Unlike ground-based solar, SBSP is not affected by day-night cycles, seasonal variation, or cloud cover, enabling uninterrupted power generation.

Higher Efficiency Levels - In space, solar radiation is 40–50% more intense than on Earth's surface due to the absence of atmospheric filtering, leading to higher conversion efficiency.

Zero-Carbon and Dispatchable Energy - SBSP can act as a clean, carbon-free energy source that is dispatchable on demand, thereby complementing variable renewables like wind and terrestrial solar.

Grid Stability Role - By ensuring continuous energy delivery, SBSP could serve as a balancing mechanism in future renewable-heavy electricity grids, reducing dependence on fossil-fuel based backup systems.

Challenges to SBSP

Scale and Infrastructure Requirements - A single SBSP satellite could span over 1 kilometre in diameter, while its Earth-based receiving rectenna might be 10 times larger, demanding unprecedented levels of construction and materials.

Launch Logistics - Realizing one SBSP system may require hundreds of rocket launches, in stark contrast to the ~40 launches needed to assemble the International Space Station (ISS).

Economic Viability - Although launch costs are decreasing due to reusable rockets, the overall deployment, assembly, and maintenance expenses remain prohibitively high.

Operational Risks - Practical challenges include orbital congestion, transmission losses, interruptions in beaming, and variability in signal intensity—all of which have yet to be adequately addressed in existing models.

Security and Space Debris Concerns - Large-scale orbital infrastructure may face risks from space debris collisions, cyber sabotage, or even weaponization of energy beaming technology, raising global security issues.

Relevance for India

Net-Zero Alignment - India's commitment to achieving net-zero emissions by 2070 makes SBSP a promising long-term option to diversify its clean energy mix.

ISRO's Role - With ISRO's proven track record of low-cost launches and satellite deployment, India could reduce the otherwise high capital burden of SBSP projects.

Global Solar Leadership - As a founding leader of the International Solar Alliance (ISA), India can leverage its diplomatic and technical influence to shape international cooperation on SBSP.

Strategic Collaborations - Joint ventures with UK, Japan, EU, and other space-active nations already exploring SBSP could help India fast-track feasibility studies, develop indigenous technology, and reduce costs through shared expertise.

Conclusion

Current Status - SBSP is still at an experimental and conceptual stage, facing enormous technological, financial, and logistical barriers before practical deployment.

Future Potential - If developed successfully, it could emerge as a game-changing source of clean, continuous, and globally distributable energy.

India's Position - Given India's space technology strength and renewable energy ambitions, SBSP represents a strategic frontier technology that could significantly contribute to its long-term sustainable energy security and climate goals.

Source: https://indianexpress.com/article/explained/explained-sci-tech/could-we-soon-have-space-based-solar-panels-not-really-10211527/

